FMステレオ・チューナの製作

ディジタル信号処理をハードウェア化して, 高音質FMチューナを実現する

林輝彦(thayashi@ta2.so-net.ne.jp) JA2SVZ

ディジタル・デザイン・テクノロジ誌付属の FPGA基板で製作したFMステレオ・チューナ

FMステレオ・チューナの構成

5

総合テスト (SN比)

ステレオ(無変調)

モノラル(無変調)

信号発生器: VP-8122A, アンテナ入力レベル: 60dBuV EMF

総合テスト (ステレオ分離度)

信号発生器: VP-8122A, アンテナ入力レベル: 60dBuV EMF 7

 アンテナからのRF信号を直接A-D変換し、デジタ ル信号処理によって復調する。

究極の受信機!?

 原理的には可能:現在入手可能なデバイスでどこまで 実現できるのか?

A-Dコンバータ

アンテナ

アナログ方式の受信機の基本的な構成。受信機として必要な増幅度と選択度の大部分は中間周波増幅段で得ている。

DDC(Digital Down Conversion)方式 によるFMステレオ・チューナ

A-Dコンバータをアンテナに近い位置に配置し、受信機としての大部分の信号処理を ディジタル・ドメインで行う、ディジタル方式の受信機。ダイレクト・サンプリング方式。 周波数構成は ZerolF方式 (DC:ダイレクト・コンバージョン)

DC (Direct Conversion: ZerolF)方式 適用の制約

- アナログ方式では局部発振出力がアンテナ入力に回り込むため、ミキサーの出力にDCオフセットを生じる。
 - 完全にOHzではない、低い周波数(「低IF」)に周波数変換し、そのあと、デジタル処理によって複素周波数変換を行うことで問題を回避。(低IF方式 1/f/イズ、2次ひずみに対しても有効)
 - 低IF方式を採用したワンチップ・ラジオICも最近は多い。
- ディジタル信号において周波数変換(つまり DDC: Digital Down Conversion)を行うのであれば、局部発振出力混入によるDCオフセットの問題は生じない。
 - DDC方式であれば、受信周波数を直接、OHzに変換する、 ZerolF方式も実用性がある。

CATVで配信される各種信号のスペク トルの例 アナログTV放送(1ch~3ch) 地デジ パススルー:OFDM変調 FM放送(16局) 97.20MHz 20.0dBm 26.56dBm W A D PK 10dB/ ATOdB ST50ms :--

BPFによってFM放送帯を取り出した スペクトル

同調回路を3個使った、中心周波数 82.5MHzのBPFによってFM放送帯を取り出したスペクトルの様子。BPFの通過帯域でのロスは6.8dB。

1次、2次のトランスを形成するコイルの等価回路は実測によって簡易的に作成したもの。結合 容量(C3、C5)はかなり小さな値になるので、コイルの中点に接続することにし、実際の回路で はシミュレーション時の4倍の値を使用した。

14

BPFの回路シミュレーション結果

回路シミュレータは PSPICE(Cadence)の評価版を使用

BPFの周波数特性の実測結果

周波数特性の測定はネットワークアナライザ(8753A+85046A/Agilent)による。可動コア によって中心周波数を76MHz、82.5MHz、90MHzに調整した3つの場合について測定した。

16

フロントエンドに用いるBPFの外観

インダクタンス可変用の可動コアを備えた市販の高周波工作向け7mm角のコイル (FCZ-07S)を使用。(*残念ながら、2011年5月をもってFCZコイルの製造は終了しています。7Kタイプのボビンで手巻きすることで代替できます。表紙のアドレスまで相談ください。*)

同調周波数をバリキャップダイオードで 可変とする例

中心周波数の調整はバリキャップ・ダイオードによる可変容量によって行う。同調電圧VtはFPGA内のROMに用意したテーブルを参照して受信周波数をもとにD-Aコンバータを用い生成。追加基板を準備中。

ispLEVER Starter で記述したFPGAのトップレベル回路図 (HDLで記述してもよい)

⁴個の乗算器を使用している。複素ミキサで使用する2個を合わせると6個となり、フロント エンド部分でFPGA上の乗算器リソースの50%を使ってしまう。

正弦波ROMテーブルの内容

メインROM

サブROM

sin_rom_main	sin_rom_sub
MEMORY_INITIALIZATION_RADIX=2;	MEMORY_INITIALIZATION_RADIX=2;
MEMORY_INITIALIZATION_VECTOR=	MEMORY_INITIALIZATION_VECTOR=
0000000000000000011111100000000000,	000000000000000000000000000000000000000
000000011000101111011111011111110110,	000000000000000000000000000000000000000
000000110001011110011111011111011001,	000000000000000000000000000000000000000
000001001010001101011111011110101001,	000000000000000000000000000000000000000
000001100010111011011111011101100101,	000000000000011000111111000000000000000
000001111011101000011111011100001101,	000000000000111101111100000000000000000
000010010100010100011111011010100010,	000000000000000010011011111100000000000
000010101100111110011111011000100100,	000000000001011001111110000000000000000
00001100010110011101111010110010011,	000000000001100101111110000000000000000
:	000000000001110001111110000000000000000
:	000000000001111101111110000000000000000
011111011101100101000001100010111011,	000000000000000000000000000000000000000
01111101111010100100001001010001101,	000000000000000000000000000000000000000
011111011111011001000000110001011110,	000000000000000000000000000000000000000
01111101111110110000000011000101111,	000000000000101011001111110000000000000
011111100000000000000000000000000000000	000000000000101110011111100000000000000
01111101111110110111111100111010001,	
011111011111011001111111001110100010,	
011111011110101001111110110101110011,	000000011000010011011110111101111,
:	000000011000010111011110111101111,
:	0000000110000110100111110111101111,
111101101011101100011111011010100010,	0000000110000111010111110111101111,
111110000100011000011111011100001101,	0000000 <mark>1</mark> 1000100000 <mark>0</mark> 11111 <mark>0</mark> 1111110110,
111110011101000101011111011101100101,	0000000 <mark>1</mark> 1000100011 <mark>0</mark> 11111 <mark>0</mark> 1111110110,
111110110101110011011111011110101001,	0000000 <mark>1</mark> 1000100110 <mark>0</mark> 11111 <mark>0</mark> 1111110110,
111111001110100010011111011111011001,	0000000 <mark>1</mark> 1000101001 <mark>0</mark> 11111 <mark>0</mark> 1111110110,
111111100111010001011111011111110110;	00000001100010110001111101111111110110;

サブテーブル(0~2 /512)は扱う角度が狭く、記録するデータの幅が限られ、ビット幅を節約できる。21

アンダ・サンプリングの手法を用いる場合、いくつものナイキストバンドに存 在する複数の信号も同じ周波数に変換される。今回、サンプリング周波数 としては 73.728MHz (= 16 × 12 × 8 × 48kHz)を選定。

22

受信周波数を変更するには

top.vhd の最終セクションを変更のこと。
 トップレベルの記述はVHDL。

$$fnco(frec) = f_s \cdot \frac{x}{2^{28}}$$

$$x = 2^{28} \frac{fnco(frec)}{fs}$$
$$fs = 73.728MHz$$

デシメーション・フィルタ

- サンプリング周波数を落とす(デシメーションする)際にエ イリアスとなる高い周波数成分を取り除く。
- 受信機としての選択度を決定する、受信帯域フィルタを 兼ねる。
- CICフィルタとFIRフィルタの組み合わせ。

CIC (Cascaded Integration - Comb) フィルタの構成(1)

SINCフィルタのカスケード接続による構成(教科書的)

CIC(Cascaded Integration - Comb) フィルタの構成(2)

積分器、微分器をまとめ、中間にデシメータを置く構成 (積分器のビット幅に注意が必要)

CICフィルタの特性例

微分器の遅延段数を16としてあるので、Fs/16=4.608MHzごとに減衰特性にノッチを生じる。カスケード段数は4とした。

27

FIRフィルタの構成

フィルタ係数との乗算結果の総和の計算

衰特性が受信機としての選択度を実質的に決定する。96タップの例。

30

CICフィルタとFIRフィルタを接続した場 合の総合特性

ナイキスト周波数全域に渡ってLPF特性が実現されている。

31

受信機の選択度特性の例

32

CORDICによるTAN⁻¹の計算 COordinate Rotation Digital Computer

 (x_1, y_1) から θ を求める。 $P_1 = (x_1, y_1) -> P_2 = (x_2, y_2) -> と順にベク$ トルを回転(大きさも変化する)させながら、X軸に収束させ θ を φ_1, φ_2 …の総和として求める。

CORDICによる18ビットtan⁻¹計算回路 (内部演算20ビット)

```
procedure cordic18cell(
     in i, in g : in signed (19 downto 0);
     in_p : in signed (19 downto 0);
     i, k : in integer;
      else
           i_inc := SHR(in_q, CONV_UNSIGNED(i-1, 6));
           q_inc := SHR(in_i, CONV_UNSIGNED(i-1, 6));
-- i,q: different polarity
           if in_i(19) = '1' \text{ xor } in_q(19) = '1' \text{ then}
               out i := in i + i inc;
               out_q := in_q - q_inc;
               out_p := in_p + k;
-- i,q: same polarity
            else
               out_i := in_i - i_inc ;
               out_q := in_q + q_inc;
               out_p := in_p - k;
           end if:
     end if:
end cordic18cell;
```

CORDICの計算:加減とシフトのみ

function cordic_rom18(
addr_in : integer) return integer is
begin
case addr_in is
when 0 => return 262144;
when 1 => return 131072;
when 2 => return 77376;
when $3 = $ return 40884;
when $4 = $ return 20753;
when $5 = $ return 10417;
:
:
when $13 = $ return 41;
when $14 = $ return 20;
when $15 = $ return 10;
when $16 = $ return 5;
when $17 = $ return $3;$
when $18 = $ return 1;
when $19 = $ return 1;
when others $=$ return 0;
end case;
end cordic rom18:

 $arphi_1$, $arphi_2$... を引き出すためのROM

FM復調におけるSN比(受信感度)

• 復調器出力における、雑音電力密度: n'

$$n' = \frac{2 \cdot no}{C} \cdot \left(\frac{f}{\Delta F}\right)^2$$

• 周波数 $f_1 \sim f_2$ 間の雑音電力: Po $Po = \frac{2 \cdot no}{3 \cdot C} \cdot \left(\frac{f_2^3 - f_1^3}{\Delta F^2}\right)$

復調出力におけるSN比: SNR

$$SNR = \frac{3 \cdot C}{2 \cdot no} \cdot \left(\frac{\Delta F^2}{f_2^3 - f_1^3}\right)$$

+vJPV χ V: C

復調出力のFFTによる解析

入力信号レベル: 40dBf

入力信号レベル: 80dBf

FFTのサンプル数は16384。ノイズフロアの形状はFM変調特有の「三角雑音」 により、対数カーブになる。

入力信号レベルと復調出力の S/N比の関係(実測値)

測定の都合上、FM変調信号の最大周波数偏移は3kHzとし、周波数帯域を 17~21kHzとした場合の測定結果。点線は雑音指数から求めた理論値。

FMコンポジット信号のスペクトル

L+R信号、L-R信号、パイロット信号の3つの成分から成る。76kHzにはDARCというVICS 交通情報等のデータ放送が実施されていることがあるが、この図では省略。

ステレオ復調器のブロック図

19kHz PLL

高調波は7次まで計測。変調度:Main(L+R) + Sub(L-R) = 65.5kHz, Pilot=6.54kHz

昨今の表面実装部品との付き合い方

QFNパッケージのICだって、どんどん使う!

林輝彦(thayashi@ta2.so-net.ne.jp) JA2SVZ

アンケート: ハンダ付けは、どの程度...

- 以下のどれにあてはまるか、挙手で教えてください。
- (A)「QFNパッケージも含め、SMD(表面実装部品)のハンダ付けはい つもやっているけど、何か?」
- (B)「SMDのハンダ付けは、必要なら実験室とかでやることもあるけど、 QFNパッケージって、手付けでハンダ付けできるの?へー…」
- (C)「昔はハンダ付けは嫌いじゃなくて、自分でも良くやったけど、最近はSMDばかりで... そういえば最近ハンダ付け、やらなくなったよ。」

QFN(Quad Flat Non-leaded)パッ ケージのIC

- 最近の高性能なIC (高速パイプラインA-Dコンバータ, 等)は QFNパッケージで供給されることが多い。
 - QFNパッケージのICを避けていては、先進の面白い回路が作れない。
- QFP(Quad Flat Package)にくらべ、さらにハンダ付けは 難しそう。

位置合わせさえ、正確に行なえば、手付けでもハンダ付 けは十分可能!

基板の準備

基板は木板に固定。基板の向きを自 由に変えるために、あまり大きすぎな い。(この例は大き過ぎ)

(Chemtronics)

ハンダ・フラッシュ仕上げの基板。表面 が少しデコボコ。

BS-R20R (太洋電機産業)

ハンダ吸い取り線で余剰なハンダは 「ふき取る」

ハンダ吸い取り線から出たフラックスをフ ラックス洗浄剤で清掃し、準備完了。

QFNパッケージ

ADC14C105(NS)の外観。

 端子: 8端子×4辺 (32) 0.5mm 間隔
 端子は底面だけでなく、側面にも「顔」 を出している。

EP: Exposed Paddle -> GND に接続。

• 予備ハンダは不要

位置合わせのコツ

- 透明粘着テープ(セロテープ)をパッケージの幅程度の短 冊に切り、これを使ってパッケージを基板に固定する。
 - 最初にハンダ付けする辺はテープでカバーしない。
 - 基板のシルク印刷をガイドにして位置を合わせるが、最終的には、 ルーペで見ながら、基板のパターンとQFNパッケージの側面の端 子を、4辺完全に一致させる。(15分~30分程度、時間をかけ るつもりで。)
 - テープの端は折り返し、剥がし易くし、この両端を持って位置合わせをする。
 - 絶対、「妥協」しない!
- 最初にハンダ付けする辺は、ベタのGNDパターン等の無い、一定の配線が接続されている辺にする。

最初の辺をハンダ付け

最初にハンダ付けする辺にフラックス を塗布して数分、乾燥させる。

BS-R20B

SE-26006 RMA (太洋電機産業)

PRESTO No.980 チップ:980-T-BC (白光)

基板(ワーク)の温度を十分上げるように 留意して、一気に仕上げる。溶けたハン ダの表面張力も利用するつもりで。

ハンダの流れの悪いピンの修正は他の 3辺を仕上げてからにする。

フラックス除去前は接続不良があっても良く 見えない。

残りの辺も同様に。

テープを剥がし、他の辺の位置合わせの状況を確認。(この時点ならやり直し可能)

残りの3辺にもフラックスを塗布して数 分待つ。

全辺のハンダ付け終了。GNDのベタのピン に十分時間(一呼吸)をかける。

フラックス洗浄剤でフラックスを除去し接続 の様子を観測する。

接続部の目視確認

側面からハンダの流れ具合をよく確認する。 目視で明らかに接続できていない端子はこの時点で修正する。

EP: Exposed Paddle のハンダ付け

ハンダの量は少なめにしてEPへのハン ダの「まわり」が見えるように。

 GNDインピーダンスの低減(安定動作)、放熱のため、EPはGNDパターン にハンダ付けする必要がある。

集合抵抗(100 x4)のハンダ付け

最初の仮止め用の糸ハンダ片を置く。 この例では、右上のピンを最初に作業。 (0.6mm x1.5mmくらい)

端のピンを仮止めする。

他のピンを仕上げる。(ランドの形状が少し、 不適切だった。反省。)

MNR14E0APJ101 x4

4つの集合抵抗を取り付け終わったところ。

接続部の導通テスト

DMMダイオードテストの結果

GND パターンに赤リード接続 FPGA基板側のピン

デジタル出力端子の1本。 導通OK。 アイソ レーション抵抗(100)の抵抗を含め、 確認。 隣接の端子はハンダ付け不良!

端子の種類によって、電圧降下が異なる。 (アナログ入力端子の例)

- ICの端子にはESD保護のため、PNダイオードが作り込まれており、 その順方向電圧降下をDMMのダイオードテストで測定する。
 - DMMのダイオードテストでDUTに流す電流を把握しておく。
 - 1mA以下(多くのDMM)であれば、微小信号の入力端子であっても、 測定電流による損傷の可能性は無い。

手が3本欲しい...

- 左手が器用な人はこの「王道」
 - 親指・人差し指に持ったピンセットで部品を固定、中指-小指に糸ハン ダを挟み、ハンダを供給。(私には無理...)
 - 右手でハンダ鏝を操作。
- < 代案: 以下の2つの方法 >
- 片方のランドに予備ハンダ
 - 素早く、若干のフラックスが残るように。
 - ピンセットで部品をつかみ、予備ハンダを再加熱し位置を調整して仮止め。(部品側に予備ハンダはしないー 危険な行為)
 - 反対側の端子をハンダ付け。
 - 最初の端子を(必要なら)再仕上げ。
- 1-2mmに切った糸ハンダ片を用意し仮止めするランド横におき、ランドの予備ハンダを行わず、端子をハンダ付け。

通常の2端子部品のハンダ付け

仮止め用ハンダ切れ端

最初の仮止め用のハンダを置く。 (0.6mm x1.5mmくらい)

ピンセットで部品を保持しながら、右側の 端子(熱容量の小さい側)をハンダ付け。

右側の接続完了。

100nF X7R 1608サイズ

基板の方向を変え、反対側の端子を仕上 げる。場合によっては最初の右側を再修 正して完了。

A-Dコンバータ周辺

クローズアップ。反省:SMD部品高に対しランド形状が小さすぎ、 ハンダが盛りすぎになっている部分がある。