QlS2800S シリーズ DDS 信号発生器 ユーザーマニュアル

1. 概要

QLS2800S シリーズは、大規模な FPGA と 32 ビットの高速 arm プロセッサを使用して います。基板を表面実装化し、干渉防止と耐用年数を大幅に改善しています。ディスプレイ は、すべてのパラメータを表示できる高解像度 320×240 ドット 2.4 インチ TFT LCD パネ ルです。ボタンを効果的に活用し操作性を大幅に向上させています。本機は、信号生成、波 形スイープ、パラメータ測定において役立ち、電子エンジニア、電子研究所、生産ライン、 教育および研究にとって理想的な測定器と言えます。

2. モデル

2 つのモデルがあり、違いは出力波形の最大周波数です。QLS2805S は最大 5MHz、 QLS2802S は最大 2MHz です。

3. 特長

- 1. Direct Digital Synthesis (DDS) テクノロジーと FPGA デザインで超低消費電力。
- 2. 持ち運びが容易な単一の DC5V AC アダプタ電源。
- 3. ボタン、ロータリエンコーダ、TFT カラーLCD を備え、使いやすさが大幅に向上。
- 4. 基本的な正弦波、方形波、三角波(ノコギリ波)などの波形発生。
- 5. 出力信号の周波数は、0.01Hzから発生可能。
- 6. 波形の周波数分解能は 0.01Hz、振幅分解能は 10mV。
- 7. パルスのデューティサイクルは 0.5%まで正確に調整可能。
- 8. [Manual] [External] いずれかのトリガで、1~999,999の任意のバースト出力可能。
- 9. 開始~終了周波数を指定した周波数スイープ出力可能。
- 10. 周波数測定、カウント機能付き。
- 11. M0~M9の10個のプリセットメモリがあり、M0は起動時に自動呼び出し。
- 校正機能を内蔵。
- 13. 強力な通信機能、通信プロトコル完全にオープンで二次開発が容易。
- 14. PC に接続して QLS2800S シリーズ機器を制御可能。

4. 仕様

QLS2800S シリーズには QLS2802S と QLS2805S の 2 つのモデルがあります。

項目		内容		
		QLS2802S	0Hz~2MHz	
		QLS2805S	0Hz~5MHz	
	変調出力	周波数スキャン、バースト		
	波形タイプ	正弦波、方形波、三角波(ノコギリ波)		
	周波数誤差	±8×10-6		
公本	周波数安定度	$\pm 5 \times 10-6$		
	振幅レンジ	10mVp-p~10Vp-p		
	出力インピーダンス		$50\Omega \pm 10\%$	
	振幅分解能		10mVp-p	
	振幅安定度	±0.5% (every 5 hours)		
	振幅誤差	± 1% + 10mV (frequency 1KHz, 8Vp-p)		
	オフセットレンジ	-100%~+100%		
正改论	高調波抑圧比	40dBc(<1MHz), 35dBc(1MHz~5MHz		
	歪率	<0.8%(20Hz~20KHz)		
	立ち上がり時間	≤28ns		
七叉子	オーバーシュート	≤10%		
2112112	デューティサイクル 調節レンジ	0.1%~99.9%		
	Duty cycle = 50%		三角波	
三角波	Duty cycle > 50.1%	上昇ノコギリ波		
	Duty cycle < 49.9%	下降ノコギリ波		
	立ち上がり時間	≤28ns		
TTL/CMOS	Lレベル	<0.3V		
	H レベル	1V~5V		
	スイープ時間		0.1s~999.9s	
	スイープレンジ	0~最大周波数		

項目		内容		
	周波数測定レンジ	0.01Hz~60MHz		
	最小入力電圧	0.5Vp-p		
办 立[7=↓3□1 松約台5	最大許容入力電圧	10Vp-p		
フトロり自己の方法的	カウントレンジ	0~4294967295(32bit カウンタ)		
	カウント方法	マニュアル		
	入力ソース	EXT.IN 端子(アナログ信号)		
プリセットメモリ	メモリ数	10		
	アドレス	M0~M9		
外部 インタフェース	モード	USB - シリアル		
	通信レート	57600 bps		
	プロトコル	コマンドライン		
電源	DC	5V		
サイズ	$L \times W \times H$	170×200×70mm		
重さ	本体のみ	518g		

5. パネルの説明

2	波形出力端子(OUT)	6	調整ノブ
3	外部信号入力端子(EXT.IN)	7	機能ボタン
4	TTL 信号出力端子(TTL)	8	補助ボタン

6. ディスプレイの表示

1	出力周波数	6	ゲート時間
2	振幅電圧	7	計測ウィンドウ
3	オフセット	8	オプション
4	デューティサイクル	9	メインウィンドウ
5	計測機能		

7. 信号発生機能

[OUT=]が表示されている窓がメインウィンドウで、信号発生パラメータを表示します。 操作対象部分は青枠で囲まれます。

「 ボタンで波形出力(OUT 端子)の ON/OFF ができます。

① 波形設定

ご 「 」 「 ボタンのいずれかを押すか、 WAVE / 波形ボタンを押し、 調整ノブで出力波形を選択します。(Sine / Square / Triangle)

② 周波数設定

FREQ//频率ボタンを押し、 (1) ボタンでステップ値を変更し、調整ノブで出力波形の周波数を変更します。(00,000,000.00~05,000,000.00Hz)

③ 振幅設定

AMPL / 幅度 ボタンを押し、 ◆ 、 ◆ ボタンでステップ値を変更し、調整ノブで出 力波形の振幅値を変更します。(0.00~10.00V、10.00V が標準)

④ オフセット調整

OFFS / 偏 置 ボタンを押し、 ◆ \ → ボタンでステップ値を変更し、調整ノブで出 力波形のオフセットを変更します。(-100~100%、000%が標準)

⑤ デューティサイクル調整

DUTY/**占空**ボタンを押し、 ◆ **** →ボタンでステップ値を変更し、調整ノブで 出力波形のデューティサイクルを変更します。(00.0~99.9%、50.0%が標準)

8. カウント機能

[Cnt]ボタンを押すと、図 8 のように下側にカウントウィンドウを表示します。 {Cnt=Count}

カウントする信号は[EXT. IN]端子に入力します。

- 【 ボタンを押すと、カウントを開始します。
- ボタンを押すと、カウントを一時停止します。
- **CLR** ボタンを押すと、カウント値をクリアします。
- [ESC]ボタンを押すと、メインウィンドウに戻ります。

図 8

9. 周波数測定機能

[T.F]ボタンを押すと、図9のように下側に周波数ウィンドウを表示します。{T.F=Test Frequency}

測定する信号は[EXT. IN]端子に入力します。

- 「()) ボタンを押してから、調整ノブでゲート時間を設定します。ゲート時間には 0.01s/0.1s/1.0s/10.0s の4つがあり、時間が長いほど測定した周波数の分解能が高くなります。
- 【 「 ボタンを押すと、周波数測定を開始します。
- **CLR** ボタンを押すと、周波数測定結果をクリアします。
- [ESC]ボタンを押すと、メインウィンドウに戻ります。

	CLR
AMPL: 4.99V	Π
DUTY: 50.1%	
EXT= Test Freq	GATE
01 ^M 000 ^K 000 ₊00Hz	ESC

図9

10.スイープ機能

[Swp]ボタンを押すと、図 10 のスイープウィンドウを表示します。{Swp=Sweep}

🔺 🔪 🔽 ボタンでパラメータを選択し、 🛑 🔪 🕩 ボタンでステップ値を変更し、 調

整ノブでパラメータ値を変更します。

- Start スイープ開始周波数
- ② End スイープ終了周波数
- ③ Time スイープ時間
- ④ Mode スイープモード (Logari/Index) {Logari=Logarism}
- ⑤ Dection スイープ方向 (Forward/Reverse/Reciprocat) {Dection=Direction、Reciprocat=Reciprocate}
- ⑥ Control スイープ状態 (Running/Stop)
- ⑦ Freq スイープ中の現在周波数 {Freq=Frequency}
- [ON]ボタンを押すとスイープを開始、[OFF]ボタンを押すと停止します。
- [ESC]ボタンを押すと、メインウィンドウに戻ります。

図 10

1	スイープ開始周波数	5	スイープ方向
2	スイープ終了周波数	6	スイープ状態
3	スイープモード	7	スイープ現在周波数
4	スイープ時間		

11.バースト機能

[Brt]ボタンを押すと、図11のバーストウィンドウを表示します。{Brt=Burst}

- Number
 [PULS]ボタンを押して、 ↓ ↓ボタンでステップ値を変更し、調整ノブでパルス数を設定します。
- 2 Mode

[MODE]ボタンを押して、調整ノブで[Manual] [External]を選択します。 [Manual]を選択すると、[OK]ボタンを押すとバースト出力します。 [External]を選択すると、外部信号トリガでバースト出力します。

③ Control

[ON]ボタンでバースト機能が有効になり、[OFF]ボタンで無効になります。

■ [ESC]ボタンを押すと、メインウィンドウに戻ります。

図 11

12.システム設定機能

[Sys]ボタンを押すと、図 12 のシステム設定ウィンドウを表示します。{Sys=System}

▲ ↓ ▼ ボタンでパラメータを選択します。

① Save & Recall

プリセットメモリへの保存または呼び出しを行います。調整ノブで M00~M09 を 選択します。M10 への保存は全ての設定を初期化します。 [SAVE]を押すと設定パラメータを保存します。 [REAL]を押すと設定パラメータを呼び出します。{REAL=Recall}

- Sound ビープ音の ON/OFF を設定します。調整ノブで[ON] [OFF]を選択します。 [SAVE]を押すと設定が保存されます。
- ③ Lang {Lang=Language} 操作メニューの言語を設定します。調整ノブで[中文] [English]を選択します。 [SAVE]を押すと設定が保存されます。
- ④ Adjust
 内部周波数校正を行います。標準値は 100000 です。 ◆ ↓ ●ボタンでステップ値
 を変更し、調整ノブで校正値を設定します。
- [ESC]ボタンを押すと、メインウィンドウに戻ります。

図 12

1	プリセットメモリ アドレス	3	操作メニュー言語
2	ビープ音	4	周波数校正